

A Qualitative Analysis of Practical De-Identification Guides

Wentao Guo, Aditya Kishore, Adam Aviv,¹ Michelle Mazurek

University of Maryland

¹*The George Washington University*

Sharing data can benefit the public good

Pharmaceutical companies publish **clinical trial** data.

Scientists verify the **safety and effectiveness** of new treatments.

Aid organizations publish data about **program outcomes**.

Journalists report on whether tax dollars are being spent ethically and impactfully.

But data can also bring individuals harm

Clinical trial data could reveal participants' **physical and mental health** to employers and insurance companies. Foreign aid data could reveal participants' **political sentiments** to local organized crime and terrorism groups.

De-identifying data can protect individuals

De-identification: modifying data to make it more difficult to re-identify or learn information about individuals

De-identifying data can protect individuals

But practitioners need good guidance

Many de-id techniques and approaches

Delete data

Generalization

College Park Maryland Swap values

Add noise 2023-01-14 + rand(n) =

2023-02-02

k-anonymity

Age	Gender	Zip	
30	f	34667	
42	m	34675	
32	m	34931	=
44	f	34925	
68	f	34931	
72	m	34931	
61	f	34931	

Unal et al., https://doi.org/10.1016/B978-0-323-90570-1.00007-3

	Age	Gender	\mathbf{Zip}
≯	< 50	*	346**
	< 50	*	346^{**}
	< 50	*	349**
	< 50	*	349**
	≥ 50	*	349**
	≥ 50	*	349^{**}
	*	*	*

Differential privacy

Gaikwad, https://doi.org/10.53469/jrse.2024.06(08).01

Achieving acceptable privacy is hard

Often involves significant technical expertise or manual effort

• Need to navigate various pitfalls that can undo intended protections

Balancing privacy with utility is complicated

• Impacts on downstream use cases are not well understood

Research questions

- What content do de-identification guides contain, particularly with regard to techniques and attacks?
- 2. Are guides designed to help readers decide on a de-identification strategy and carry it out?

Guide scope

- Updated 2018 or later
- Microdata (not aggregate statistics)
- For practitioners (not research papers)
- ...and more

Collecting de-id guides

Sampling guides for analysis

Attacks

Learning aids

...and more

- Generalization
- Synthetic data

Techniques

Attacks

Learning aids

...and more

Coding process

Qualitative analysis with two coders

Coded one guide collaboratively to flesh out codebook structure

Double-coded all remaining guides separately

• Met regularly to resolve differences and update the codebook

RQ1: What content do guides contain (especially techniques and attacks)?

J						
	Researchers	Government agencies, businesses, and other				
<i>k</i> -anonymity	2 out of 15 guides	15 out of 23 guides				
Differential privacy	1 out of 15 guides	10 out of 23 guides				

There is as of yet **no easy to use, off-the-shelf tool that researchers can use to implement differential privacy**. Consequently, we do not recommend it at this stage, unless you are statistically proficient enough.

– Vrije Universiteit Brussel

There is as of yet no easy to use, off-the-shelf tool that researchers can use to implement differential privacy.

γO

[Before our organization adopts differential privacy, we need to assess how well it applies to **the types of data we collect**, whether it is worth the **additional resources**, and if it matches **funders' expectations**.]

– anonymous guide

Inconsistent definitions

Anonymization . . . involves the **complete and irreversible** removal of any information from a dataset that could lead to an individual being identified.

– The New School

It is not possible to say with certainty that an individual will never be identified from a dataset which has been subjected to an anonymisation process.

- Irish Data Prot. Comm.

Also inference, aggregation, perturbation, and more

Gaps in threat coverage

Many guides cover *singling out* and *linking* as key concepts, but not *reverse engineering*

Guides lack details to help readers prevent reverse engineering

- Of 14 guides that discuss hashing, only 7 mention the importance of a salt
- Some suggest minimal randomness: e.g., shift all ages by the same offset

Data Scrambling

This technique involves mixing and obfuscating letters. For example, the name Jonathan, can be scrambled into 'Tojnahna'.

RQ2: Are guides designed for usability?

Limited examples

Only 13 out of 38 guides contain *detailed examples*:

- Illustrating data both before and after de-id
- Meaningfully demonstrating de-id across multiple variables

Name	Age	Previous country of residence	Date of entry	Current address	IP address	
(Anonymised)	(Rounded to decade)	(No changes made)	(Random noise added with st.dev. 50 days)	(Grouped to suburb)	(Omitted)	
Yuki Sato #0923485	34 30-39	Japan	2020-01-12 2020-02-10	1 Green St, Bundoora	140.134.209.234 omitted	
Tanya Ivanova #6506544	60 60-69	Russia	2018-04-06 2018-04-04	2 Gold Rd, Gardenvale	111.040.280.616 omitted	– La Trobe University
Ratu Apinelu #6745859	59 50-59	Tuvalu	2019-12-24 2020-01-03	3 Blue Dr, St Kilda	065.968.234.185 omitted	25

A worked deidentification example

A Qualitative Analysis of Practical De-Identification Guides Wentao Guo, Aditya Kishore, Adam Aviv, Michelle Mazurek

We evaluated 38 de-id guides' content and usability.

We find notable differences in advice for different audiences, including discussion of barriers to differential privacy adoption.

We think de-id guides could be improved by...

- Explicitly noting potential confusion over inconsistent terms
- Discussing threats more systematically, especially reverse engineering
- Improving usability through more and better examples

